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Anyon condensations in 2+1D



The mathematical theory of anyon condensation has a long history Moore-Seiberg:1988-1989,

Bais-Slingerland:2002-2008, Kapustin-Saulina:1008.0654, Levin:1301.7355, Barkeshli-Jian-Qi:1305.7203, ...,

Böckenhauer-Evans-Kawahigashi:math/9904109,0002154, Kirillov-Ostrik:math/0101219,

Frölich-Fuchs-Runkel-Schweigert:math/0309465, K.:1307.8244, ...

Theorem

Let C and D be the modular tensor categories (MTC) of anyons in two 2+1D topological

orders. An anyon (or boson) condensation from C to D, which produces a gapped domain

wall M, is determined by a condensable E2-algebra A in C.

• D is the category of deconfined particles =the

category of local A-modules (or E2-A-modules)

in C; the trivial anyon 1D ∈ D is A ∈ C;

⊗D = ⊗A.

• M is the category of (de)-confined particles

= the category of right A-modules in C.

• bulk-to-wall maps: C
−⊗A−−−→M←↩ D

C
D

M

◦A

•

•
y

x ∈ D
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Example:

1. Consider 2+1D Ising topological order Is3, we use Is to denote the category of all

topological defects (codimension 1 and higher), and use ΩIs to denote that of defects of

codimension 2 and higher, i.e., the MTC of anyons.

ΩIs has three simple objects 1, ψ, σ. Consider the double Ising MTC.

Z1(ΩIs) = ΩIs � ΩIsop = {1 � 1,1 � ψ,ψ � 1, ψ � ψ, σ � ψ, σ � σ, · · · }

2. Toric code MTC: ΩTC = Z1(Rep(Z2)) consisting of four simple objects 1, e,m, f .

Now we consider the condensable E2-algebra in ΩIs � ΩIsop:

A := 1 � 1⊕ ψ � ψ ∈ ΩIs � ΩIsop. (1)

By condensing A in C, we obtain toric code from double Ising. Bais-Slingerland:0808.0627,

Chen-Jian-K.-You-Zheng:1903.12334.

ΩTC ' (ΩIs � ΩIsop)locA = ModE2

A (ΩIs � ΩIsop).
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Contrary to the physical intuitions that a phase transition between two phases are

reversible, above mathematical description of an anyon condensation is not reversible

because we have Davydov-Müger-Nikshych-Ostrik:1009.2117.

dimD =
dimC

(dimA)2
,

where dimA > 1 for any non-trivial condensation.

It turns out that this phenomenon is a reflection of the fact that the 1-category of

anyons (i.e., defects of codimension 2) does not include all topological defects in a

2+1D topological order Kitaev-K.:1104.5047. In this talk, I will show that, by including all

topological defects of codimension 1 and higher, we obtain a 2-category and a rather

complete defect condensation theory, which is ready to be generalized to higher

dimensions.
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Category of topological defects



The mathematical theory of topological defects in an n + 1D (potentially anomalous)

topological order was developed in a series of works based on three guiding principles.

1. Remote Detectable Principle, Levin:1301.7355, K.-Wen:1405.5858

2. Boundary-bulk relation, Kitaev-K.:1104.5047, K.-Wen-Zheng:1502.01690,1702.00673

3. Condensation Completion Principle. Carqueville-Runkel:1210.6363,

Douglas-Reutter:1812.11933, Gaiotto, Johnson-Freyd:1905.09566, Johnson-Freyd:2003.06663,

K.-Lan-Wen-Zhang-Zheng:2003.08898

Preceded by some earlier attempts K.-Wen:1405.5858, K.-Wen-Zheng:1502.01690, this theory

was established by Johnson-Freyd in 2020 Johnson-Freyd:2003.06663 (see further

developments in K.-Zheng:2011.02859,2107.03858).
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We summarize the main results of this theory for an (potentially anomalous) n+1D

topological order Cn+1.

1. The category of all topological defects (of codimension 1 and higher) form a
fusion n-category C (an E1-fusion n-category). Johnson-Freyd:2003.06663

1.1 0-morphisms (i.e., objects) in C are 1-codimensional defects;

1.2 1-morphisms in C are 2-codimensional defects;

1.3 k-morphisms are (k + 1)-codimensional defects;

1.4 n-morphisms are (n + 1)-codimensional defects (i.e., instantons or 0D defects).

2. 1 ∈ C labels the trivial 1-codimensional defect.

3. ΩC := hom(1, 1) is the category of defects of codimension 2 and higher. It is

braided fusion (n − 1)-category or E2-fusion (n − 1)-category.

4. Ωk−1C is the category of defects of codimension k and higher. It is an Ek -fusion

(n − k + 1)-category. K.-Zheng:2011.02859

I will explain the meaning of ‘E1’, ‘E2’ and ‘Ek ’.
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1. C is E1-fusion: two 1-codimensional defects x , y ∈ C can be fusion in one

direction x ⊗1 y .

2. ΩC is E2-fusion: two 2-codimensional defects a, b ∈ ΩC can be fused in two

orthogonal directions:

x1x2

ca

db
aξ

b
η

ΩC

1C 1C

a⊗1 c

b ⊗2 a

⇔ braiding structure

3. Ωk−1C is Ek -fusion: two k-codimensional defects p, q ∈ Ωk−1C can be fused in k

orthogonal directions: p ⊗1 q, p ⊗2 q, · · · , p ⊗k q.
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Convention of notations:

- Topological orders: An+1,Bn+1,Cn+1, · · · ;
- Category of all defects (codimension 1 or higher): A,B,C, · · · ;
- Category of defects of codimension 2 or higher: ΩA,ΩB,ΩC, · · · ;
- Category of defects of codimension k or higher: Ωk−1A,Ωk−1B,Ωk−1C, · · · .

If Cn+1 is anomaly-free, then C = ΣΩC = Kar(BΩC) (n = 2 Carqueville-Runkel:1210.6363,

Douglas-Reutter:1812.11933; n ≥ 2 Gaiotto, Johnson-Freyd:1905.09566).

BΩC '
1

ΩC=hom(1,1)

�� ΣΩC = Kar(BΩC) =
1

ΩC

�� M
** x

ΩxC

��

Mop

jj

Physically, C = ΣΩC means that all 1-codimensional defects, which cannot be braided,

can only be the condensation descendants of 2-codimensional defects, which can be

braided and detectable by double braidings. K.-Wen:1405.5858.
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2+1D Z2 topological order TC3: We denote the fusion 2-category of topological defects in

TC3 by TC. In this case, ΩTC has four simple objects (or anyons) 1, e,m, f :

e ⊗ e ' m ⊗m ' f ⊗ f ' 1, f ' e ⊗m ' m ⊗ e.

Mathematically, ΩTC can be identified with the Drinfeld center Z1(Rep(Z2)) of Rep(Z2). The

fusion 2-category TC consists of six simple objects (i.e. 1-codimensional topological defects)

1, θ, ss, sr, rs, rr. K.-Zhang:2205.05565 θ is the invertible domain wall realizing the e-m duality.

⊗ 1 θ ss sr rs rr

1 1 θ ss sr rs rr

θ θ 1 rs rr ss sr

ss ss sr 2ss 2sr ss sr

sr sr ss ss sr 2ss 2sr

rs rs rr 2rs 2rr rs rr

rr rr rs rs rr 2rs 2rr

TC3 TC3

s s

TC3 TC3

r r
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2+1D Ising topological order Is3: We denote the fusion 2-category of topological

defects in Is3 by Is. In this case, ΩIs = {1, ψ, σ} is the MTC of anyons.

It turns out that the only simple 1-codimensional topological defect in Is3 is the trivial

defect 1. Fuchs-Runkel-Schweigert:hep-th/0204148.

Is ' ΣΩIs ' BΩIs '
1

ΩIs

��
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Theorem Gaiotto, Johnson-Freyd:1905.09566: We denote the category of defects of the trivial

topological order 1n+1 by nVec, which consists of only trivial k-dimensional defects 1k for

1 ≤ k ≤ n and their condensation descendants (i.e., defects that can be obtained from 1k via

condensation).

(1) 10+1: 0Vec = C (i.e., trivial fusion 0-category);

(2) 11+1: 1Vec := ΣC = Kar(BC) = {C⊕k} (i.e., trivial fusion 1-category);

1 = 11,
1

C

��

(3) 12+1: 2Vec = ΣVec = Kar(BVec) = {Vec⊕k} (i.e., trivial fusion 2-category);

1 = 12,
1

Vec

��
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(4) 1n+1: nVec = Σ(n − 1)Vec = ΣnC 6= {(n − 1)Vec⊕k} for n ≥ 3. For example,

3Vec = {2Vec⊕k ,ΣA|A is a multi-fusion 1-category} = {separable 2-categories}.

Mn−1

Bn1 = 1n

A non-chiral topological order Bn

(i.e., admits a gapped boundary)

is a condensation descendant of 1 = 1n

1

(n−1)Vec

�� M
++
Bn

B

��

Mop

jj

nVec
'−→ Sepn−1

1 7→ (n − 1)Vec

Bn 7→M

K.-Zheng:2011.02859

1

Fun(1,1)

�� Fun(1,M)'M
,, M

B=Fun(M,M)

��

Fun(M,1)'Mop

ll

Remark: The physical meaning of the (n − 1)-category M is the category of gapped boundary

conditions of Bn.
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3+1D toric code TC4: According to our convention of notations, we use TC4 to

denote the category of all defects. It is a fusion 3-category which contains infinitely

many simple objects (i.e., 1-codimensional defects).

1. It is relatively easier to describe the braided fusion 2-category ΩTC4 of the defects

of codimension 2 and higher. There are four simple 2-codimensional defects:

1, 1c ,m,mc ,

1

{11,e}

�� {x}
++ 1c

{11c ,z}

��

{y}
jj m

{1m,e}

��
{x}

++
mc

{1mc ,z}

��

{y}
kk

where 1c is the condensation descendant of 1 (by condensing the e-particles along

a line K.-Wen:1405.5858) and is sometimes called a Cheshire string. Else-Nayak:1702.02148

2. fusion rules: m ⊗m = 1, 1c ⊗ 1c = 1c ⊕ 1c and m ⊗ 1c = mc .

K.-Tian-Zhou:1905.04644, K.-Tian-Zhang:2009.06564
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Condensations of topological defects



Theorem (K.-Zhang-Zheng-Zhao:2403.07813): Condensing a k-codimensional topological

defect A in an n+1D (potentially anomalous) topological order Cn+1 amounts to a

k-step process.

(1) The k-codimensional defect A ∈ Ωk−1C is condensable if it is equipped with the

structure of a condensable Ek -algebra, i.e. an algebra equipped with compatible

multiplications in k independent directions.

We first condense A along one of the transversal directions xk , thus obtaining a

(k − 1)-codimensional defect ΣA := RModA(Ωk−1C) ∈ ΣΩC.

xk−1

xk

A •

• A
• A
• A
• A
• A
• A

condensation−−−−−−−→

xk−1

xk

A • ΣA
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(2) It turns out that ΣA is naturally equipped with the structure of a condensable

Ek−1-algebra, thus it can be further condensed along one of the remaining transversal

direction xk−1, thus obtaining a (k − 2)-codimensional defect Σ2A := RModΣA(Ωk−2C).

xk−2xk−1

xk

ΣA •

•ΣA

•ΣA

•ΣA

•ΣA

•ΣA

•ΣA

condensation−−−−−−−−→
xk−2

xk

xk−1

ΣA • Σ2A

(3) In the k-th step, condensing the 1-codimensional defect Σk−1A along the only transversal

direction defines a phase transition to a new n+1D topological order Dn+1, which is

Morita equivalent to Cn+1, and a gapped domain wall Mn.

Mn Dn+1Cn+1

Z(C)n+2 = Z(D)n+2

D ' ModE1

Σk−1A
(C) = BModΣk−1A|Σk−1A(C)

(M,m) = (ΣkA := RModΣk−1A(C),Σk−1A).
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(4) A k-codimensional deconfined topological defects in Dn+1 form the category

Ωk−1D, which can be computed directly as the category of Ek -A-modules.

Ωk−1D = Ωk−1 ModE1

Σk−1A
(C) ' ModEk

A (Ωk−1C),

A k-codimensional topological defect is deconfined iff it is equipped with a

‘k-dimensional A-action’, which defines the mathematical notion called an

Ek -module over A or an Ek -A-module.

(5) Similarly, the confined k-codimensional defects (confined to the wall Mn) can also

be computed directly.

Ωk−1
m M = Ωk−1ΣkA = Ωk−1 RModΣk−1A(C) ' RModA(Ωk−1C).
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(6) When Cn+1 is anomaly-free (i.e., C = ΣΩC), the same phase transition, as a k-step

process, can be alternatively defined by replacing the last two steps by a single step of

condensing the E2-algebra Σk−2A in the remaining two transversal directions directly.

Cn+1

•
•
•
•
•
•

•

•• ••
•
•

•
•
• •

••
•••

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

Σk−2A •x1x2

condense−−−−−−−→

Cn+1

Dn+1

The condensed phase Dn+1 is determined by the category of E2-modules over Σk−2A.

ΩD ' ModE2

Σk−2A
(ΩC), D ' ΣΩD, ΩmM = RModΣk−2A(ΩC).

When n = 2, this modified last step is precisely a usual anyon condensation in 2+1D.

(7) The condensable Ek -algebra A is called Lagrangian if Dn+1 = 1n+1.
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Example: Consider 2+1D Z2 topological order TC3.

1. Ae = 1⊕ e is a Lagrangian E2-algebra in ΩTC. Condensing it along a line produces a

string ΣAe = rr, which can be further condensed to create the rough boundary of TC3.

TC3

•
•
•
•
•
•

Ae
Ae

Ae

Ae

Ae

Ae

condense−−−−−−→
r r

TC3 TC3

2. Am = 1⊕m is a Lagrangian E2-algebra in ΩTC. Condensing it along a line produces a

string ΣAm = ss, which can be further condensed to create the smooth boundary of TC3.

TC3

•
•
•
•
•
•

Am
Am

Am

Am

Am

Am

condense−−−−−−→
s s

TC3 TC3
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Consider 3+1D toric code TC4

the braided fusion 2-category ΩTC4: 1

{11,e}

�� {x}
**
1c

{11c ,z}

��

{y}

jj m

{1m,e}

��
{x}

++
mc

{1mc ,z}

��

{y}
jj

A commutative algebra (or an E2-algebra) in ΩTC4 is an object A equipped with two

1-morphisms: A⊗ A
µ−→ A and 1

η−→ A, and three 2-morphisms: left/right unitors λ, ρ,

associator α and commutator β.

AA A
α +3

AAA A
λ +3

A A
ρks

A A
β +3

A A

,
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the braided fusion 2-category ΩTC4:
1

{11,e}

�� {x}
++ 1c

{11c ,z}

��

{y}
jj m

{1m,e}

��
{x}

++
mc

{1mc ,z}

��

{y}
kk

There are three Lagrangian E2-algebras (among infinitely many) in ΩTC4.

(1)Ae = 1c : 1
η=x−−→ 1c , 1c ⊗ 1c = 1c ⊕ 1c

µ=11c⊕0−−−−−→ 1c .

(2) Am := 1⊕m

Am ⊗ Am

Am

µ :=

1⊗ 1

1

11

1⊗m

m

1m

m ⊗ 1

m

1m

m ⊗m

1

11

(3)Atw
m = (1⊕m)tw :

m m m

αm,m,m=−1 +3

mmm
m m

βm,m=±i+3
mm
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Examples: Cn+1 = 1n+1. In this case, the category of all defects C = nVec (an E1-fusion

n-category).

A condensable E1-algebra A in nVec is precisely a multi-fusion (n− 1)-category. By condensing

A in nVec, we obtain the condensed phase Dn+1 and a gapped domain wall Mn.

Mn

Dn+11n+1

Dn+1 is a non-chiral topological order

(i.e., admitting a gapped boundary)

and a condensation descendant of 1n+1

D ' BModA|A(nVec), Mn = (M,m) = (RModA(nVec),A)

ΩD = FunA|A(A,A) = Z1(A), ΩmM = A

If Z1(A) = (n − 1)Vec, then D = ΣΩD = Σ(n − 1)Vec = nVec (i.e., Dn+1 = 1n+1). It means

that a multi-fusion (n − 1)-category A is Lagrangian iff Z1(A) = (n − 1)Vec.
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4 Since Cn+1 = 1n+1 is anomaly-free, we can also condense a defect of codimension 2

directly. The category of 2-codimensional defects in 1n+1 is (n − 1)Vec. A condensable

E2-algebra in (n − 1)Vec is precisely a braided fusion (n − 2)-category B. By condensing

B directly along remaining two transversal directions, we obtain Dn+1 and a gapped

domain wall Mn.

ΩmM

ΩDΩC = (n − 1)Vec

Dn+1 is a non-chiral topological order

(i.e., admitting a gapped boundary)

and a condensation descendant of 1n+1

ΩD = ModE2

B ((n − 1)Vec), D = ΣΩD ' Σ ModE2

B ((n − 1)Vec) ' ModE1

ΣB(nVec),

ΩmM = RModB((n − 1)Vec) = ΣB, M = ΣΩmM.

When n = 3, every fusion 2-category is Morita equivalent to ΣA for a braided fusion

1-category A. Décoppet:2208.08722 It means that all non-chiral 3+1D topological orders

can be obtained from 14 by condensing defects of codimension 2 (i.e., strings).
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When Cn+1 = Dn+1 = 13+1, the category of strings is ΩC = 2Vec. The gapped

domain wall M3 is precisely a 2+1D anomaly-free topological order, which can

described by a pair (B, c) for a modular tensor category B.

M3

(B, c)

14 14

rolling up−−−−−→

M3

= B ∈ 2Vec.

By rolling up the 2+1D anomaly-free topological order M3, we obtain a string-like

defect in 14, which is precisely the object B ∈ ΩC = 2Vec. By condensing this string,

we obtain ΩD = ModE2
B (2Vec) ' Ω ModE1

ΣB(3Vec) ' Ω3Vec = 2Vec. Therefore,

D4 = 14 and B is a Lagrangian E2-algebra in 2Vec.
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(3). Cn+1 is anomaly-free, i.e. Z1(C) = nVec. In this case, we have

C = ΣΩC = RModΩC(nVec)

provides a concrete coordinate system to the non-degenerate fusion n-category C.

Theorem (Brochier-Jordan-Synder:1804.07538, K.-Zhang-Zhao-Zheng:2403.07813)

An indecomposable condensable E1-algebra in C are precisely an indcomposable multi-fusion

(n − 1)-category A equipped with a central functor L : ΩC→ A (i.e., a braided monoidal

functor φ : ΩC→ Z1(A)). When φ : ΩC→ Z1(A) is a braided equivalence, the condensable

E1-algebra A is Lagrangian in the sense that Dn+1 = 1n+1.

Condensing A in C produces a condensed phase Dn+1 and a gapped domain wall Mn:

D ' ModE1

A (C), M ' RModA(C) ' RModA(nVec), m = A,

Question: Does the abstract data of L : ΩC→ A, which defines an abstract algebra, has a

direct physical meaning?

Liang Kong Higher Condensation Theory 24 / 36



Physical Meaning of this Theorem:

M ' RModA(C) ' RModA(nVec),

m = A,

ΩmM = RModA(A,A) ' A. ΩC

ΩmM = A

m = A

ΩD

ΩC
L−→ A

Take home message: The multi-fusion higher category ΩmM (of all defects on the

domain wall Mn) is a condensable E1-algebra in C.
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Example: C3 = TC3: The topological defects in TC3 form the fusion 2-category

TC ' Σ(ΩTC) = RModZ1(Rep(Z2))(2Vec).

A condensable E1-algebra in TC are precisely a mulit-fusion categories A equipped with a

central functor Z1(Rep(Z2))→ A.

1. Z1(Rep(Z2))
id−→ Z1(Rep(Z2)) defines a condensable E1-algebra Z1(Rep(Z2)). It is just

the trivial condensable E1-algebra, i.e., tensor unit 1 of TC.

2. f : Z1(Rep(Z2))→ Rep(Z2) defines a condensable E1-algebra Rep(Z2)op = Rep(Z2) in

TC, which is precisely the 1-codimensional defect ss in TC.

ModE1

Rep(Z2)(TC) ' 2Vec,
TC3 TC3

s s

Since the condensed phase is trivial, ss is a Lagrangian condensable E1-algebra in TC.

Liang Kong Higher Condensation Theory 26 / 36



3 Z1(Rep(Z2))
'−→ Z1(VecZ2 )→ VecZ2 defines a condensable E1-algebra VecopZ2

= VecZ2 ,

which is precisely the 1-codimensional defect rr in TC. We have

ModE1

VecZ2
(ΣZ1(Rep(Z2))) ' 2Vec,

TC3 TC3

r r

Since the condensed phase is trivial, rr is a Lagrangian condensable E1-algebra in TC.

4 Consider double Ising 2+1D topological order (ΩIs is the Ising MTC).

A := 1 � 1⊕ ψ � ψ ∈ ΩIs � ΩIsop ' Z1(ΩIs) (2)

has a condensable E2-algebra in Z1(ΩIs). Then the central functor

{1, e,m, f } = ΩTC = ModE2

A (Z1(ΩIs)) ↪→ RModA(Z1(ΩIs))op = {1, e,m, f , χ±} = K

Chen-Jian-K.-You-Zheng:1903.12334 defines a condensable E1-algebra in TC. Condensing it in

TC produces the 2+1D double Ising topological order as the condensed phase.

ModE1

K (TC) ' Is � Isop.
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(4). Cn+1 has a gapped boundary Bn, i.e., Cn+1 = Z(B)n+1: In this case, we have a new

coordinate system for C (obtained by condensing Bop in nVec):

C = BModBop|Bop(nVec) ' BModB|B(nVec)op

1. An indecomposable condensable E1-algebras in C is precisely an indecomposable

multi-fusion n-category Aop equipped with a monoidal functor B→ A.

2. By condensing Aop in C, we obtain the condensed topological order Dn+1 = Z(A)n+1 with

D ' ModE1

Aop(C) ' BModAop|Aop(BModBop|Bop(nVec)) ' ModE1

Aop(nVec) ' ΣZ1(A)

and a gapped domain wall Mn

M ' RModAop(BModBop|Bop(nVec)) ' BModA|B(nVec), m = A, ΩmM = FunA|B(A,A).

For X ∈ LModB(nVec), the canonical monoidal functor B→ Fun(X,X) defines a Lagrangian

E1-algebra Fun(X,X)op in C = BModB|B(nVec)op.
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When Cn+1 = Z(B)n+1, there are two coordinate systems for C.

C = ΣΩC = RModΩC(nVec), C = BModBop|Bop(nVec).

B A

Bop ΩmM

Z1(B) Z1(A)

Z(B)n+1 Z(A)n+1

FunA|B(A,A)Bop

Aop

A

The same algebra in two coordinate systems :

(1) the central functor Z1(B)→ FunA|B(A,A)

defines an algebra FunA|B(A,A) in RModΩC(nVec);

(2) the monoidal functor B→ A

defines an algebra Aop in BModB|B(nVec)op.

K.-Zheng:1307.5956,2107.03858
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B A

ΩmM

Z1(B) Z1(A)

Z(B)n+1 Z(A)n+1

FunA|B(A,A)Bop

X

Center functor :

B 7→ Z1(B);

X 7→ FunA|B(A,A) = ΩmM;

is fully faithful when n = 2.

is faithful when n = 3.

K.-Zheng:1307.5956,2107.03858

This general construction of condensable E1-algebras in Cn+1 = Z(B)n+1 leads to a

classification of condensable E1-algebras in finite gauge theories in 3D, 4D and many

constructions for higher dimensions.

When B = 2Rep(G ) and A = 2Vec, this map (for a MTC E K.-Zheng:1705.01087):

2Rep(G)X 7→ Fun2Rep(G)(X,X)op (2Rep(G)�ΣEX 7→ Fun2Rep(G)�ΣE(X,X)op)

provides a one-to-one correspondence between 2Rep(G )-modules and gapped boundaries (or

Lagrangian algebras) within the same Morita class as 2Rep(G ) (resp. 2Rep(G ) � ΣE).
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Some examples in 3+1D from Décoppet:2205.06453, Décoppet-Xu:2307.02843:

1. Condensable E3-algebras in 2Vec are symmetric multi-fusion 1-categories, which

are automatically E∞-monoidal.

2. Condensable E2-algebras in Z1(2VecG ) for a finite group G are exactly G -crossed

braided multi-fusion 1-categories.

3. Let B be an E2-fusion 1-category. A braided multi-fusion 1-category A equipped

with a braided functor B→ A is a condensable E2-algebra in the E2-fusion

2-category Z1(RModB(2Vec)).
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A higher dimensional example: Consider the n+2D G -gauge theory GTn+2
G . The category of

2-codimensional defects in GTn+2
G was conjectured in K.-Tian-Zhou:1905.04644 to be:

ΩGTn+2
G = Z1(nRep(G )) ' Z1(nVecG ) ' ⊕[h]∈Cl nRep(CG (h))

The fusion (n + 1)-category GTn+2
G has two coordinate systems:

GTn+2
G = RModZ1(nRep(G))((n + 1)Vec), GTn+2

G = BModnRep(G)|nRep(G)((n + 1)Vec)op,

We have ΩGTn+2
G = Z1(nRep(G )) and

ΩkGTn+2
G = (n − k + 1)Rep(G ) for k ≥ 2

When k = n, ΩnGTn+2
G = Rep(G ) is the 1-category of particles.
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Let H < G be a subgroup of G . The composite particle

A = Fun(G/H) (i .e.,C-valued functions on G/H)

is an En+1-algebra in ΩnGTn+2
G = Rep(G ). By condensing the A-particles, we mean

the following procedures.

(1) We first condensing the A-particle along a line, we obtain a string

ΣA = RModA(Rep(G )) ' Rep(H) ∈ 2Rep(G ) = Ωn−1GTn+2
G .

(2) We further condense the ΣA-string along one of the remaining transversal

directions, we obtain a membrane:

Σ2A = RModΣA(2Rep(G )) ' RModΣA(2Vec) ' 2Rep(H) ∈ 3Rep(G ) = Ωn−2GTn+2
G .
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(3)

Σn−1A = (n − 1)Rep(H) ∈ nRep(G ) ↪→ Z1(nRep(G )).

ΣnA = RModΣn−1A(Z1(nRep(G ))) ∈ ΣZ1(nRep(G )).

Translate ΣnA into an E1-algebra in the second coordinate system of GTn+2
G . It is defined

by the following monoidal functor:

nRep(G )→ nRep(G ) �Z1(nRep(G)) RModΣn−1A(Z1(nRep(G )))

' RModΣn−1A(nRep(G )) ' nRep(H).

(4) By condensing ΣnA = nRep(H), we obtain Dn+2 = GTn+2
H as the condensed phase:

D ' ModE1

nRep(H)op(GTn+2
G ) ' ModE1

nRep(H)op((n + 1)Vec) ' GTn+2
H .

As a consequence, we provides the precise mathematical theory behind the folklore that

breaking the G -gauge “symmetry” in GTn+2
G to a subgroup H gives the H-gauge theory GTn+2

H .
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Conclusion and outlooks

1. One can see that the theory of defect condensation is precisely a mathematical

theory of higher representations of higher algebras or higher Morita theories.

There will be a mathematical companion of this paper, in which we develop a

mathematical theory of condensable Ek -algebras.

2. It is possible to developed a mathematical theory of condensations of gapless but

liquid-like defects based on the theory of gapped/gapless quantum liquids

K.-Zheng:1705.01087,1905.04924,1912.01760,2011.02859, which is a prehistorical theory of

SymTO/SymTFT based on the so-called ‘topological Wick rotation’.

3. Although a new paradigm is emerging, as far as I can tell, it is still far from being

complete. A complete paradigm demands an entirely new calculus, in which we

are still in the beginning stage to understand integers. It means that there are a

lot of exciting problems to work on in the coming future.
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Thank you!
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