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A morphism between two mathematical objects of the same type (e.g. groups, algebras,

representations, categories, etc.), preserving the defining structures of the mathematical

objects, is arguably the most important notion in mathematics. Ironically, such a notion for

physical systems (e.g. QFT’s) had never been introduced in physics.

In 2015, we introduced the notion of a morphism (preserving the structures) between two

topological orders (or quantum phases or QFT’s) in K.-Wen-Zheng:1502.01690. In this talk, I will

review this notion and its applications in the study of topological orders or quantum liquids

K.-Zheng:1705.01087,1905.04924,1912.01760,2011.02859,2107.03858. In particular, we show that it

naturally leads us to boundary-bulk relation and topological Wick rotation, which essentially

equivalent to “categorical symmetry” or “Symmetry/TO correspondence” Ji-Wen:1912.13492,

K.-Lan-Wen-Zheng-Zhang:2005.14178. We also show that the a morphism between QFT’s is a more

precise and fundamental structure underlying the idea of “topological symmetry” or “SymTFT”

Freed-Moore-Teleman:2209.07471, Apruzzi-Bonetti-Etxebarria-Hosseini-Schäfer-Nameki:2112.02092.
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Question: How to define a morphism between two QFT’s?

A well known answer: A usual definition of a morphism between two QFT’s is a

domain wall between two QFT’s. A domain wall provides a physical realization of the

mathematical notion of a bimodule because the domain wall is naturally equipped with

the two-side action of the operators in two QFT’s.

QFT1 QFT2

Remark: However, such a definition of a morphism (as a bimodule) is less

fundamental because it does not preserve the algebraic structures of a QFT. As a

consequence, such a definition of a morphism (as a bimodule) only distinguishe QFT’s

up to Morita equivalences.
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In mathematics, there is a more fundamental or natural notion of a homomorphism

between two algebraic objects, i.e. a map preserving the algebraic structure.

1. A group homomorphism f : G → H: f (g1g2) = f (g1)f (g2) for g1, g2 ∈ G .

2. An algebra homomorphism f : A→ B between two C-linear algebras is a C-linear

map such that f (ab) = f (a)f (b).

Question: What is the physical realization of the notion of an algebra homomorphism?

Or equivalently:

Question: How to map a quantum many-body system (or QFT) to another such that

algebraic structures of operators or observables are preserved?
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A morphism between QFT’s or

quantum liquids



Before we introduce this notion, we need some preparation. The term “topological

order” in the following a few slides will be replaced eventually by (gapped/gapless)

“quantum liquid”, a notion which is, however, harder to define. Therefore, for

convenience, we restrict our discussion to the familiar notion topological orders at first.

We will come back to quantum liquids later.

Definition (K.-Wen:1405.5858)

A topological order is called anomaly-free if it can be realized by a lattice model in

the same dimension, and is called anomalous otherwise.

Examples: The gapped boundaries of non-trivial topological orders are examples of

anomalous topological orders. A gapped boundary of the trivial n+1D topological

order is an anomaly-free nD topological order.
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Unique Bulk Hypothesis/Principle [K.-Wen:1405.5858]

A (potentially anomalous) nD topological order An has a unique n+1D anomaly-free

topological order as its bulk, denoted by Z(An) = Z(A)n+1.

Remark: An anomalous topological order must be realizable as a defect in a higher

(but still finite) dimensional lattice model as illustrated below. Otherwise, it is safe to

say that such a topological order does not exist. But such realizations are not unique.

An
⇝ An ⇝ Z(A)n+1 An

After the dimensional reduction, we obtain the unique bulk of An. Importantly, An

should be understood as a boundary phase, which includes a neighborhood of the

boundary by definition.

Liang Kong A morphism between two QFT’s 6 / 42



Example: If Dn−1 is a domain wall between An and Bn, then Z(D)n+1 = An ⊠ Bn.

An

Dn−1

Bn

⇝

An

Dn−1

Bn

An

An−1

An

⇝

An

An−1

An

where An−1 denotes the An restricting to the trivial domain wall of codimension 1.
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Example: 1n = the trivial nD topological order. We have

• Z(1)n+1 = 1n+1;

• An is anomaly-free if and only if Z(A)n+1 = 1n+1;

• Z(Z(A))n+2 = 1n+2.

Z(A)n+1 An

Remark: The statement of “the bulk of a bulk is trivial” is somewhat dual to that of

“the boundary of a boundary is empty”, which inspired homology theory. Therefore,

we expect that “the bulk of a bulk is trivial” should lead us to a non-trivial

“cohomology theory”.
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Definition (K.-Wen-Zheng:1502.01690, 1702.00673)

A morphism f : An → Bn between two topological orders An and Bn (both having gapped

bulks) is a gapped wall fn between Z(A) and Z(B) such that

Z(B)n+1 Z(A)n+1 Anfn

fn ⊠Z(A)n+1
An = Bn

The composition of two morphisms f : An → Bn and g : Bn → Cn is defined as follows:

Z(C)n+1 gn Z(B)n+1 fn Z(A)n+1 An

g ◦ f := gn ⊠Z(B) fn
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Z(B)n+1 Z(A)n+1 Anfn

This definition of a morphism

coincides with the mathematical notion of

a monoidal functor between two fusion n-categories
ak

a1

a2

A L99 Af 99K F

Z1(A)Z1(B) ···

F ⊠Z1(A) A = B

monoidal functors ⇐⇒ domain walls between Z1(B) and Z1(A)

(A
f−→ B) 7−→ F := FunA|B(fB, fB),(

A
f−→ F ⊠Z1(A) A = B

)
←− [ F

These two constructions are inverse of each other. K.-Zheng:1507.00503, 2107.03858
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Examples 1: An
idA−−→ An is defined by the trivial domain wall Z(A)n in Z(A)n+1.

Z(A)n+1 Z(A)n Z(A)n+1 An

Z(A)n ⊠Z(A) An = An

Examples 2: Let 1n be the trivial nD topological order. There is a canonical

morphism ιA : 1n → An defined by:

Z(A)n+1 An 1n+1 1n

An ⊠1n+1 1n = An
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Examples 3: There is a canonical morphism

Z(A)n ⊠ An
m−→ An

defined as follows

Z(A)n+1

Z(A)n+1

Z(A)n+1

Z(A)n+1

An

Z(A)n

Z(A)n

Z(A)n

(Z(A)n ⊠ Z(A)n)⊠Z(A)⊠Z(A)⊠Z(A) (Z(A)n ⊠ An) = An
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Theorem (K.-Wen-Zheng:1502.01690, 1702.00673)

The pair (Z(A)n,m) satisfies the universal property of center. That is, if X is an nD

topological order equipped with a morphism f : Xn ⊠ An → An, then there is a

unique morphism f ′ : Xn → Z(A)n such that the following diagram is commutative:

Z(A)n ⊠ An

m

��

Xn ⊠ An

f

%%

∃! f ′⊠idA

OO

An

ι⊠idA

77

99

idA // An

Remark: This theorem simply says that the bulk is the center of the boundary.

Liang Kong A morphism between two QFT’s 13 / 42



This universal property works for all the well-known notions of centers.

1. When A is a group and m is a group homomorphism, it recovers the center of a group

Z (A) = {z ∈ A|zg = gz ,∀g ∈ A}.

2. When A is an algebra and m is an algebraic homomorphism, it recovers the usual center

of an algebra Z (A) = {z ∈ A|za = az ,∀a ∈ A}.

3. When A is a fusion category and m is a monoidal functor, it recovers the Drinfeld center.

4. When A is a braided fusion category and m is a braided monoidal functor, it recovers the

Müger center.

5. The center of open-string CFT is the closed CFT and is called a full center.

Fjelstad-Fuchs-Runkel-Schweigert:math.CT/0512076, K.-Runkel:0708.1897, Davydov:0908.1250

6. Generalized Deligne Conjecture (Kontsevich): the En-center of an En-algebra is an

En+1-algebra. Lurie’s book “Higher Algebras”
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X Y

L M N

C ≃ Z1(L) ≃ Z1(M) ≃ Z1(N)

For 2+1D non-chiral topological orders, we have recovered the well-known result. In this case,

a 3D topological order can be described by a modular tensor category (MTC) C

Moore-Seiberg:1989, Kitaev:cond-mat/0506438 and its gapped boundaries can be described by fusion

categories L,M,N Kitaev-K.:1104.5047. Moreover, we have

1. C ≃ Z1(L) ≃ Z1(M) ≃ Z1(N) Kitaev-K.:1104.5047, Fuchs-Schweigert-Valentino:1203.4568,

K.:1307.8244

2. X is an invertible L-M-bimodule that defines an Morita equivalence between L and M.

Remark: Mathematically, two fusion categories are Morita equivalent if and only if they share

the same center. Etingof-Nikshych-Ostrik:0809.3031.
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L,M,N are fusion n-categories.

LXM,MYN are bimodules.

X YL M N

Z1(L) Z1(M) Z1(N)

FunL|M(X,X) FunM|N(Y,Y)

Theorem (Boundary-Bulk Relation with Defects, K.-Zheng:1507.00503, 2107.03858)

The assignment L 7→ Z1(L) ≃ FunL|L(L,L) and X 7→ FunL|M(X,X) defines a functor.

FunL|M(X,X)⊠Z1(M) FunM|N(Y,Y) ≃ FunL|N(X⊠M Y,X⊠M Y)
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Fundamental formula in computing a fusion or dimensional reduction:

FunL|M(X,X)⊠Z1(M) FunM|N(Y,Y) ≃ FunL|N(X⊠M Y,X⊠M Y)

XL

Z1(L)

FunL(X,X)

X

Fun(X,X)

VecRep(G)

Z1(Rep(G))

VecG

Vec

Vec = Fun(Vec,Vec)
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XL M

Z1(L) Z1(M)

FunL|M(X,X)

XL ⊠Mrev

Z1(L) ⊠ Z1(M)

FunL⊠Mrev (X,X)

X

Fun(X,X)

Theorem[K.-Zheng:1507.00503]: When n = 1, this center functor is a monoidal equivalence.

Proof : LXM = L⊠MrevX ⇐⇒ a monodial functor : L⊠Mrev → Fun(X,X)

Recall : (f : A→ B) =
Z(A)n+1

An

fn

⇐⇒ a domain wall : FunL⊠Mrev(X,X) = FunL|M(X,X).

It automatically includes (1) A ∼Morita B iff Z1(A) ≃ Z1(B) Etingof-Nikshych-Ostrik:0809.3031; (2)

BrPic(A) ≃ Autbr (Z1(A)) Etingof-Nikshych-Ostrik:0909.3140. For n > 1, it is not an equivalence.
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The formal proof of boundary-bulk relation assumed only the well-definedness of the

notion of a morphism between two quantum phases, which is further based on the

uniqueness of the bulk and the well-definedness of the fusion of domain walls. This

notion and the formal proof should also work for certain ‘nice’ gapless phases.

1. For 1+1D rational CFT’s, this boundary-bulk relation reproduces the so-called

open-closed duality for 1+1D RCFT’s, i.e. the bulk (closed) CFT is the center of

a boundary (or open) CFT, a result which was known long ago.

Fjelstad-Fuchs-Runkel-Schweigert:math.CT/0512076, K.-Runkel:0708.1897, Davydov:0908.1250

Definition: Those (gapped/gapless) quantum phases such that above formal proof of

boundary-bulk relation works will be called “quantum liquids”, a notion which can be

more precisely defined as a ‘fully dualizable QFT’ K.-Zheng:2011.02859

Remark: Only a few days ago, I noticed that Grady-Pavlov had introduced a notion

called ‘fully dualizable geometric QFT’ in Grady-Pavlov:2111.01095.
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Cn+1f̃n An

f̃n ⊠Cn+1
An = Bn

⇝ An
Cn+1

f̃n
⇝

Z(A)n+1

An
fn

fn ⊠Z(A)n+1
An = Bn

Note that the pair (f̃n,Cn+1) also realizes physically a morphism f : An → Bn. But such

physical realizations of the same morphism are not unique in general.

Such physical realizations of a morphism, although non-unique, are still very useful and was

called a ‘weak morphism’ in Appendix A.3 in K.-Wen-Zheng:1502.01690.

Remark: This notion seems to work for all (quantum) many-body systems if we choose a

scheme of crossgraining in order to make sense of fusion and abandon the (most strict)

associativity of the composition, which should not hold for generic non-topological systems.

Question to all physicists: A morphism for classical systems?
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Relation to the idea of topological symmetry or SymTFT: Freed-Moore-Teleman:2209.07471,

Apruzzi-Bonetti-Etxebarria-Hosseini-Schäfer-Nameki:2112.02092

Bn := Fn ⊠Cn+1 An := gapped Cn+1

gapless An

gapped Fn

(1) For us, Fn defines a morphism An → Bn and An defines a morphism Fn → Bn.

(2) The intuition that the pair (F,C) acts on B can be stated more precisely.

• (Fn ⊠ Cn)⊠Bn → Fn ⊠Cn+1 Cn ⊠Cn+1 An ⊠Bn ≃ Bn ⊠Bn → Bn. This “(F,C)-action on B”

does not preserves the algebraic structure of B. Hence, it is not an action in usual sense.

• Topological defects in Fn is mapped into those in Bn, the latter of which are non-invertible

symmetries thus “acting” on Bn (preserving dynamics). This “action” is not compatible

with the view that both dynamics and topological defects are defining data of Bn.

• Can we define an action Xn ⊠ An → An that preserving all algebraic structure of An? Yes,

by the universal property of the center, such an Xn-action on An must factor through the

canonical Z(A)n-action on An, i.e. Z(A)n ⊠ An
m−→ An.
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Gapless boundaries of 2+1D

topological orders



Consequences of boundary-bulk relation:

1. It leads to the classification of all n+1D anomaly-free topological orders (up to

invertible ones) by fusion n-categories with a trivial E1-center or braided fusion

n-categories with a trivial E2-center; K.-Wen:1405.5858, K.-Wen-Zheng:1502.01690,

Johnson-Freyd:2003.06663

2. The proof applies to an n+1D topological order Cn+1 with a gapless boundary An.

Z(A)n+1

An
fn

fn ⊠Z(A)n+1
An = Bn

gapped Cn+1 = Z(A)n+1

gapless An

Since we already have a precise categorical description of Cn+1 as a braided fusion

n-categories Cn with a trivial E2-center, then we can find the categorical

description of a gapless boundary An by solving the mathematical equation

Z1(?) = C.
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Consider the 1+1D worldsheet of a gapless boundary of the 2+1D topological order (C, c).

Ma,a

Mb,b

Mc,c

Mb,c

Ma,b

Mp,p

Mq,q

Mr ,r

Mq,r

Mp,q

It turns out that the macroscopic observables on the 1+1D worldsheet form an enriched fusion

category BS K.-Zheng:1705.01087, 1905.04924, 2011.02859, K.-Wen-Zheng:2108.08835, where

1. a, b, c ∈ S are the labels of topological defect lines (TDL);

2. Ma,b is the spaces of fields living on the 0D defect junction; in particular, it means that

the space of fields living on the TDL label by ‘a’ is just Ma,a;

3. OPE Mb,c ⊗C Ma,b
◦−→ Ma,c of defect fields defines a kind of ‘composition map’ such that

all {Ma,b}a,b∈S together form a structure similar to that of a category ({hom(a, b)}a,b∈C).

4. We will show next that Ma,b, ◦ ∈ B and we obtain a B-enriched category BS.

Liang Kong A morphism between two QFT’s 23 / 42



V ⊂ M1,1

Ma,a

Mb,b

Mc,c

Mb,c

Ma,b

Mp,p

Mq,q

Mr ,r

Mq,r

Mp,q

M1,1

Let 1 ∈ S be the label of the trivial TDL. Then fields in M1,1 can live in the 2-cell. A

subalgebra of fields generated by ⟨T (z , z̄)⟩ ⊂ M1,1 is transparent to all TDL’s. Without loss of

generality, we assume that ⟨T (z , z̄)⟩ ⊂ V ⊂ M1,1 is transparent to all TDL’s. Assume V is

rational, i.e. ModV is a MTC. Moore-Seiberg:1989, Huang:math/0502533

Ma,b is clearly a V -module (with a 2-dimensional V -action), i.e. Ma,b ∈ ModV . The

compatibility between the OPE Mb,c ⊗C Ma,b
◦−→ Ma,c and the V -action is equivalent to a

morphism Mb,c ⊗V Ma,b
◦−→ Ma,c in ModV . As a consequence, we obtain an ModV -enriched

fusion category ModV S, where homModV S(a, b) = Ma,b and ⊗ is the horizontal fusion of TDLs.

It turns out that all correlation functions and the OPE among defect fields can be recovered

from (V ,ModV S).Huang:math/0303049,math/0502533, Fuchs-Runkel-Schweigert:2001-2006,

Huang-Kirillov-Lepowsky:1406.3420, K.:0807.3356, Davydov-K.-Runkel:1307.5956
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Theorem (K.-Zheng:1705.01087, 1905.04924, 1912.01760)

The ‘rational’ gapped/gapless boundaries of a 2+1D topological order (C, c) can be

completely characterized or classified by the triples (V , ϕ, S) or (V , ϕ,BS), where

1. for a chiral gapless boundary, V is a rational VOA of central charge c ; Huang:math/0502533

for a non-chiral gapless boundary, V is a rational full field algebra (cL − cR = c)

K.-Huang:math/0511328; when V = C, it describes a gapped boundary. Kitaev-K.:1104.5047

2. S is a fusion category equipped with a braided equivalence ϕ : C⊠ModV
≃−→ Z1(S).

Moreover, the restriction ϕ : ModV
≃−→ B := C′

Z1(S)
= ModV is a braided equivalence, which

determines a B-enriched fusion category BS via the so-called canonical construction, i.e.

Ma,b = [a, b] ∈ B. Lindner:1981,Morrison-Penneys:1701.00567

Theorem (K.-Zheng:1704.01447, K.-Yuan-Zhang-Zheng:2104.03121)

The bulk is the center of a boundary, i.e. C ≃ Z1(
BS).
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Theorem (K.-Zheng:1705.01087, 1905.04924, 1912.01760)

A gapped/gapless boundary X of a 2+1D topological order (C, c) can be completely

characterized by a pair X = (Xlqs,Xtop), where

1. Xlqs = (V , ϕ) is called local quantum symmetry (containing dynamical information);

2. Xtop = BS is called topological skeleton (recall B := C′
Z1(S)

).

Moreover, Xtop can be obtained by topological Wick rotation and Z1(Xtop) ≃ C.

(B, c)

S

(C, c)
topological Wick rotation−−−−−−−−−−−−−−−−→

BS (C, c)

When (C, c) is trivial, we obtain a holographic duality between a 3D theory and a 2D theory.
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Examples of gapped boundaries and chiral gapless boundaries: (skip unless

people ask questions)

1. For a non-chiral 2+1D topological order (Z(A), 0), where A is a fusion category,

the triple (C, ϕ,VecA = A), where ModC
ϕ=id−−−→ Vec, defines a gapped boundary.

2. For the E8 invertible 2+1D topological order (Vec, 8), the triple (VE8 , ϕ,
VecVec),

where ModVE8

ϕ=id−−−→ Vec, defines a non-trivial gapless boundary.

3. Let V be a rational VOA and C = ModV is MTC. The triple (V , id, CC) defines a

gapless boundary of (C, c) and Z(CC) ≃ C.
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Examples of non-chiral gapless edges: (skip unless people ask questions)

• Three modular tensor categories (MTC):

1. Is := ModVIs
where VIs is the Ising VOA with the central charge c = 1

2 . It has three

simple objects 1, ψ, σ (i.e. 1 = VIs) and the following fusion rules:

ψ ⊗ ψ = 1, ψ ⊗ σ = σ, σ ⊗ σ = 1⊕ ψ.

2. Z1(Is) ≃ Is⊠ Is. It has 9 simple objects: 1⊠ 1,1⊠ ψ,1⊠ σ, ψ ⊠ 1, · · · .
3. TC = the MTC of toric code. It has four simple objects 1, e,m, f and the following

fusion rules:

e ⊗ e = m ⊗m = f ⊗ f = 1, m ⊗ e = f .

Liang Kong A morphism between two QFT’s 28 / 42



• Three non-chiral symmetries (i.e. full field algebras Huang-K.:math/0511328):

1. P = VIs ⊗C VIs = 1⊠ 1 ∈ Is⊠ Is = Z1(Is) ⇒ χP = |χ0|2;
2. Q = 1⊠ 1⊕ ψ ⊠ ψ ∈ Z1(Is) ⇒ χQ = |χ0|2 + |χ 1

2
|2

3. R = 1⊠ 1⊕ ψ ⊠ ψ ⊕ σ ⊠ σ ∈ Z1(Is) ⇒ χR = |χ0|2 + |χ 1
2
|2 + |χ 1

16
|2

We have P ⪇ Q ⪇ R.

• P,Q,R are condensable algebras in Z1(Is) and R is a Lagrangian algebra.

1. ϕP : ModP = (Z1(Is))
0
P

≃−→ Z1(Is): condensing P gives Z1(Is);

2. ϕQ : ModQ = (Z1(Is))
0
Q

≃−→ TC: condensing Q in Z1(Is) gives toric code TC

Bais-Slingerland:0808.0627, Chen-Jian-K.-You-Zheng:1903.12334;

3. ϕR : ModR = (Z1(Is))
0
R

≃−→ Vec: condensing R in Z1(Is) gives the trivial phase.
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P = VIs ⊗C VIs = 1⊠ 1

Q = 1⊠ 1⊕ ψ ⊠ ψ
R = 1⊠ 1⊕ ψ ⊠ ψ ⊕ σ ⊠ σ
ϕP : ModP

≃−→ Z1(Is)

ϕQ : ModQ
≃−→ TC

ϕR : ModR
≃−→ Vec

V ⊆ M1,1

Ma,a

Mb,b

Mc,c

Mb,c

Ma,b

Mp,p

Mq,q

Mr ,r

Mq,r

Mp,q

M1,1

• Four anomaly-free 1+1D gapless quantum liquids defined by triples: i.e. its 2+1D
bulk topological order is trivial: (C, c) = (Vec, 0) and Z1(

BS) ≃ Vec.
1. (P, ϕP ,

Z1(Is)Is): in this case V = P ⊊ R = M1,1;

2. (Q, ϕQ ,
TCRep(Z2)): in this case V = Q ⊊ R = M1,1;

3. (Q, ϕQ ,
TCVecZ2): in this case V = Q ⊊ R = M1,1;

4. (R, ϕR ,
VecVec): in this case V = R = M1,1.

In all 4 cases, the space of non-chiral fields living on each 2-cells (i.e. M1,1) is

given by the same modular-invariant closed CFT R.
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• Gappable gapless edges of 2+1D toric code: TC = Z1(
BS),

Chen-Jian-K.-You-Zheng:arXiv:1903.12334, K.-Zheng:1912.01760

1. (P, ϕP ,
Z1(Is)S), where S = (Z1(Is))Q is the fusion category of the right Q-modules in

Z1(Is). S has 6 simple objects 1, e,m, f , χ±, where 1, e,m, f can be identified with 4

anyons in the bulk and χ± can be identified with two twist defects in the bulk.

2. (Q, ϕQ ,
TCTC) = the canoncial gapless edge;

3. (R, ϕR ,
VecRep(Z2) = Rep(Z2)), where ϕ : ModR

≃−→ Vec. Moreover, we have

(R, ϕR ,Rep(Z2)) = (C, id,Rep(Z2))︸ ︷︷ ︸
the smooth gapped edge

⊠ (R, ϕR ,
VecVec).︸ ︷︷ ︸

an anomaly-free 2D gapless liquid

4. (R, ϕR ,
VecVecZ2):

(R, ϕR ,VecZ2) = (C, id,VecZ2)︸ ︷︷ ︸
the rough gapped edge

⊠ (R, ϕR ,
VecVec)︸ ︷︷ ︸

an anomaly-free 2D gapless liquid

5. (smooth/rough gapped edge)⊠ (any anomaly-free 2D gapless liquid).
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How to compute the fusion of two gapless domain walls?

(C, c1) (D, c1 + c2) (E, c1 + c2 + c3)

(U,AM)

(A, c2)

M N

(V ,BN)

(B, c3)

K.-Zheng:1705.01087 (U,AM)⊠(D,c1+c2) (V ,
BN) = (U ⊗C V ,A⊠BM⊠D N),

where U,V are VOAs or full field algebras.
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Consider a 2+1D topological order (C, c) with the canonical gapless boundary (V , CC),

where V is a VOA and C = ModV , and a gapped domain wall M: K.-Zheng:1705.01087

(V , CC) (V , CC)

M

C

C

C

C

(C, c)

(C, c)

dimensional reduction−−−−−−−−−−−−→
to a 1+1D RCFT

M

M1M,1M
= [1M, 1M]

∈ C ⊠ C

(V ⊗C V , C⊠CM)

(V , CC)⊠(C,c) (C,
VecM)⊠(C,c) (V ,

CCrev) = (V ⊗C V , C⊠CM).

M1M,1M
= [1M,1M] ∈ C⊠ C recovers all modular invariant 1+1D rational CFT’s.
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(V , CC) (V , CC)

M

C

C

C

C

(C, c)

(C, c)

dimensional reduction−−−−−−−−−−−−→
to a 1+1D RCFT

M

M1M,1M
= [1M, 1M]

∈ C ⊠ C

(V ⊗C V , C⊠CM)

{modular invariant CFT’s extending V ⊗C V }
←→ {Lagrangian algebras in C⊠ C} K.-Runkel:0807.3356, Müger:0909.2537

←→ {gapped boundaries M of (C⊠ C, 0)} K.:1307.8244

←→ {gapped domain walls M in (C, c)} folding trick
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Topological Wick rotation,

categorical symmetry and SymTFT



Topological Wick rotation in all dimensions: K.-Zheng:1905.04924,1912.01760,2011.02859

For a (potentially anomalous) quantum liquid X = (Xlqs,Xtop), its topological skeleton Xtop

can be obtained by topological Wick rotation.

C

n-th spatial direction

BS
B

the time direction

C

S
=

C
BS = Xtop

S is an “anomalous gapped boundaries” nD potentially gapless boundaries

of an n+1D topological order C of an n+1D topological order C

The boundary-bulk relation holds, i.e. C ≃ Z1(
BS) K.-Zheng:in preparation. A mathematical

theory of Xlqs, based on a theory of topological nets of (symmetric) local operator algebras in

nD generalizing that of conformal nets in 2D, was developed K.-Zheng:2201.05726

Remark: In many examples, the same Xtop can be realized by both gapped and gapless phases.
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A new type of holographic dualities based on the idea of Topological Wick Rotation

K.-Zheng:1705.01087, 1905.04924, 1912.01760, 2011.02859: (nD is the spacetime dimension.)

Z1(S)

n-th spatial direction

S
Z1(S)S

the time direction

an n+1D topological order with a gapped boundary an nD quantum liquid (SPT/SET/SSB/gapless)

with an internal symmetry of finite type

S is the category of topological defects on the boundary S is the category of topological defects

{ the superselection (charge) sectors of states }

Z1(S) is the category of topological defects in the bulk Z1(S) is the category of topological sectors of operators

{ the spaces of non-local operators invariant under LOA}

Z1(S) naturally acts on S Z1(S) naturally acts on S
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This holographic duality (between n+1D and nD) based on the idea of topological Wick

rotation is closely related to that of “categorical symmetry” or “Symm/TO correspondence”.

1. The notion of categorical symmetry (i.e. Z1(S)) was proposed in Ji-Wen:1912.13492 in an

attempt to combine a symmetry G with its dual symmetry in the study of critical

phenomena. Importantly, it can be explicitly constructed from “patch charge operators”

in nD (parallel to the ModV in K.-Zheng:1705.01087 and the “topological sectors of

operators” in K.-Wen-Zheng:2108.08835).

2. It was more systematically developed in K.-Lan-Wen-Zheng-Zhang:2003.08898,2005.14178,

together with the classification of gapped quantum liquids with finite internal symmetries.

This classification result is the same as the one obtained via topological Wick rotation

K.-Zheng:2011.02859 but based on very different ideas.

3. Patch charge operators was further developed in Chatterjee-Wen:2203.03596

4. Both the idea of topological Wick rotation and Symm/TO correspondence were used in

the study of topological phase transitions in 1+1D. Chen-Jian-Kong-You-Zheng:1903.12334,

K.-Zheng:1912.01760,Ji-Wen:1912.13492,Chatterjee-Wen:2205.06244,Lu-Yang:2208.01572,Chatterjee-Ji-

Wen:2212.14432
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This holographic dualities were explicitly/implicitly discovered and further studied by different

groups of people in different contexts. An incomplete list:

• Generalized Kramers-Wannier dualities: Freed-Teleman:1806.00008,

Lootens-Delcamp-Ortiz-Verstraete:2112.09091.

• Categorical Symmetries: Ji-Wen:1912.13492, K.-Lan-Wen-Zhang-Zheng:2003.08898,2005.14178,

Albert-Aasen-Xu-Ji-Alicea-Preskill:2111.12096, Chatterjee-Wen:2203.03596,2205.06244,

Liu-Ji:2208.09101, Chatterjee-Ji-Wen:2212.14432

• Topological Wick Rotation: K.-Zheng:1705.01087, 1905.04924, 1912.01760, K.-Zheng:2011.02859,

K-Wen-Zheng:2108.08835, Xu-Zhang:2205.09656, Lu-Yang:2208.01572

• Classical Statistical Models: Aasen-Mong-Fendley:1601.07185, 2008.08598

• SymTFT: Gaiotto-Kulp:2008.05960, Bhardwaj-Lee-Tachikawa:2009.10099,

Apruzzi-Bonetti-Etxebarria-Hosseini-Schafer-Nameki:2112.02092, Freed-Moore-Teleman:2209.07471,

Apruzzi:2203.10063, Moradi-Moosavian-Tiwari:2207.10712, ...

• Strange correlators: Bal-Williamson-Vanhove-Bultinck-Haegeman-Verstraete:1801.05959
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Relation to the idea of SymTFT: Expand the system to a sandwich such that the

fusion category symmetry S lives on one side of the sandwich and leave the dynamical

data on the other side.

Z1(S)

S

n+1D TO +
a gapped boundary

TWR−−−→

(Xlqs,
Z1(S)S)

Z1(S)

S

a nD gapless phase

expand to a sandwich−−−−−−−−−−−−→
Z1(S)

SymTFT

S

gapped

(Xlqs,
Z1(S)Z1(S))

Z1(S)

Z1(S)

Z1(S) ⊠Z1(S) S = S

1. Our theory gives a more precise explanation of the ideas in “SymTFT”.

2. It also tells you that you do not need to “expand it to a sandwich” because the

graphic notion for a gapless phase obtained from TWR is already ‘the half of a

sandwich’ or a ‘quiche’ named in Freed-Moore-Teleman:2209.07471.
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Categories of quantum liquids



t

An Bn Cn Dn

Z(A)n+1 Z(B)n+1 Z(C)n+1 Z(D)n+1

Mn−1 Nn−1 On−1

Z(1)(M)n Z(1)(N)n Z(1)(O)n

We denote the category of nD anomaly-free quantum liquids by QLn (morphisms are domain

walls) and that of the topological skeletons of nD quantum liquids by QLntop.

Theorem (K.-Zheng:2011.02859, 2201.05726)

QLn ≃ QLntop ≃ •/(n + 1)Vec,

where (n+1)Vec = ΣnVec = Σn+1C is the category of nD non-chiral topological orders (that

admit gapped boundaries) and higher codimensional defects. Gaiotto-Johnson-Freyd:1905.09566.
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Summary: Main goal of this talk is to promote the notion of a morphism between

QFT’s, and to show that it is useful and powerful. Indeed, it alone had led us to the

formal proof of boundary-bulk relation, to the discovery of topological Wick rotation,

and to a unified mathematical theory of gapped and gapless quantum liquids, and to

the study of the categories of quantum liquids.

Similar to the fact that category theory once revolutionized algebraic geometry by

Grothendieck and his school, we believe that it will also revolutionize the theories of

QFTs, phase transitions and perhaps quantum gravity. The important thing is not only

to borrow categorical language for physical use, but also to use the spirit of the

category theory to ask new questions and find new truths. To define the notion of a

morphism between QFT’s is only an example of many possibilities.

If the notion of a morphism is arguably the most important concept in mathematics, it

is only reasonable that the notion of a morphism between QFT’s is an important

concept in physics.
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Thank you !
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